Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Diagnostics (Basel) ; 12(9)2022 Sep 18.
Article in English | MEDLINE | ID: covidwho-2043619

ABSTRACT

SARS-CoV-2 has remained a global health burden, primarily due to the continuous evolution of different mutant strains. These mutations present challenges to the detection of the virus, as the target genes of qPCR, the standard diagnostic method, may possess sequence alterations. In this study, we develop an isothermal one-step detection method using rolling circle amplification (RCA) for SARS-CoV-2. This novel strategy utilizes a multi-padlock (MP-RCA) approach to detect viral-RNA via a simplified procedure with the reliable detection of mutated strains over other procedures. We designed 40 padlock-based probes to target different sequences across the SARS-CoV-2 genome. We established an optimal one-step isothermal reaction protocol utilizing a fluorescent output detected via a plate reader to test a variety of padlock combinations. This method was tested on RNA samples collected from nasal swabs and validated via PCR. S-gene target failure (SGTF)-mutated strains of SARS-CoV-2 were included. We demonstrated that the sensitivity of our assay was linearly proportional to the number of padlock probes used. With the 40-padlock combination the MP-RCA assay was able to correctly detect 45 out 55 positive samples (81.8% efficiency). This included 10 samples with SGTF mutations which we were able to detect as positive with 100% efficiency. We found that the MP-RCA approach improves the sensitivity of the MP-RCA assay, and critically, allows for the detection of SARS-CoV-2 variants with SGTF. Our method offers the simplicity of the reaction and requires basic equipment compared to standard qPCR. This method provides an alternative approach to overcome the challenges of detecting SARS-CoV-2 and other rapidly mutating viruses.

2.
PLoS One ; 17(6): e0269798, 2022.
Article in English | MEDLINE | ID: covidwho-2021801

ABSTRACT

Clinical evidence for asymptomatic cases of coronavirus disease (COVID-19) has reinforced the significance of effective surveillance testing programs. Quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) assays are considered the 'gold standard' for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA. However, the labor and resource requirements can be prohibitive with respect to large testing volumes associated with the pandemic. Pooled testing algorithms may serve to increase testing capacity with more efficient resource utilization. Due to the lack of carefully curated cohorts, there is limited evidence for the applicability of RT-PCR pooling in asymptomatic COVID-19 cases. In this study, we compared the analytical sensitivity of the TaqMan™ SARS-CoV-2 Pooling Assay to detect one positive sample in a pool of five anterior nares swabs in symptomatic and asymptomatic cohorts at an institute of higher education. Positive pools were deconvoluted and each individual sample was retested using the TaqPath™ COVID-19 Combo Kit. Both assays target the open reading frame (ORF) 1ab, nucleocapsid (N), and spike (S) gene of the strain that originated in Wuhan, Hubei, China. Qualitative results demonstrated absolute agreement between pooled and deconvoluted samples in both cohorts. Independent t-test performed on Ct shifts supported an insignificant difference between cohorts with p-values of 0.306 (Orf1ab), 0.147 (N), and 0.052 (S). All negative pools were correctly reported as negative. Pooled PCR testing up to five samples is a valid method for surveillance testing of students and staff in a university setting, especially when the prevalence is expected to be low.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Humans , Pandemics , SARS-CoV-2/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL